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Wave propagation in a heterogeneous medium

Elastic wave equation in a heterogeneous medium

ρ(x)
∂2

∂t2
u(x , t) = ∇ · (C(x) : ∇⊗ u(x , t)) + f (x , t)

The material density ρ(x) and constitutive tensor C(x) fluctuate over a characteristic size `c .

The wave field is characterized by its wavelength λ.

The source-observation distance is denoted L.

The amplitude of fluctuations is denoted σ.
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Wave propagation in a heterogeneous medium : geophysics

Examples of heterogeneities

(a) at the global scale 1 (`c ≈ 1000 km) (b) at the local scale (`c ≈ 1 km)
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Figure l 
Strength-scale distribution of heterogeneities in the earth, a is the scale length, ~ = (6v/Vo)rms is the velocity 
perturbation index of the heterogeneities. 

Data are from: 
(1) Global average,from the analysis of mode splitting of free oscillation (SLEEP, N. U., R. J. GELLER, and 

S. STEIN, 1981, Bull. Seis. Soc. Amer. 71, 183-197) 
(2) Lower mantle, from body wave inversion (spherical harmonics, K = 4, L = 6), (DzlEWONSKI, A. M., 

1984, J. Geophys. Res. 89, 5929-5952) 
(3) Lower mantle, from body wave tomography (5 ~ • 5 ~ cell) (CLAYTON, R. M. and P. COMER, 1984, 

Mathematical Geophysics) 
(4) Upper mantle, from surface wave waveform inversion (WOODHOUSE, J. H. and A. M. DZIEWONSKI, 

1984, J. Geophys Res. 89, 5953-5986) 
(5) Upper mantle (Pacific plate), from surface wave full-wave inversion (Rytov approximation) 

(YOMOGIDA, K. and K. AKI, 1987, Geophys. J. R. Astr. Soc. 88, 161-204) 
(6) Upper mantle (USA),from travel time inversion (ROMANOWICZ, B. A., t979, Geophys. J. R. Astr. Soc. 

57, 479-506) 
(7) Asthenosphere (Central USA, 125 225 km deep), from travel time inversion (COCKERHAM, U. S., and 

O. L. ELLSWORTH, 1979, EOS, Trans. AGU 60, 875 and RAIKES, S. A., Geophys. J. R. Astr. Soc. 63, 
187-216) 

(8) Upper mantle (Southern California), from body wave tomography ( 3 0 x 3 0 •  50km cell) 
(HUMPHREYS, E., R. W. CLAYTON and B. H. HAt3ER, 1984, Geophys. Res. Letters 11, 625~527) 

(9) Upper mantle, a summary, from travel time inversion (AKI, K., 1981, Tectonophysics 75, 31-40) 
(10) Lithosphere, from transmission fluctuation at LASA (AKI, K., 1973, J. Geophys. Res. 78, 1334-1346 

and CAPON, J., 1974, Bull. Seis. Soc. Am. 64, 235-266) 
(11) Lithosphere, from transmission fluctuation at NORSAR (BERTEUSSEN, K. m., A. CHRISTOFFERSSON, 

E. S. HUSEBYE, and A. DAHLE, 1975, Geophys. J. R. Astr. Soc. 42, 403-417) 
(12) Lithosphere, form transmission fluctuation at NORSAR (FLATTI~, S. M. and R. S. Wu, 1988, 

J. Geophys. Res. 93, 6601-6614) 
(13) Lithosphere, from coda wave analysis (SA'rO, H., 1984, J. Geophys. Res. 89, 1221-1241) 
(14) Lithosphere, from coda wave analysis (Wu. R. S. and K. AKI, 1985, J. Geophys. Res. 90, 10261- 

10273) 
(15) Crust,from acoustic welt-log (SuzUKI,  H.,  R. IKEDA, T. MIKOSPI1BA, S. KINOSHITA, H.  SATO, and H. 

TAKAHASHI, 1981, Rev. Res. Disast. Prev. 65, 1-162) 
(16) Crust, from acoustic well-log (Wu, R. S., 1982, Geophys. Res. Lett. 9, 9-12) 

(a) Distribution of heterogeneities in the Earth 2

8 1 Introduction

scattering coefficient gm, which is the effective isotropic scattering coefficient in the
multiple scattering regime of nonisotropic scattering process as will be discussed in
Chap. 7.

Reported g0 values in the lithosphere are distributed from 10!3 km!1 to 5 !
10!2 km!1 around 10!2 km!1 for the frequency range of 1 " 30 Hz. A large value
of g0 # 1 km!1 was found from the analysis of artificial explosions on an active
volcano (Yamamoto and Sato 2010). From the analysis of lunar quakes by using
the diffusion model, the g0-value estimated ranges from 0:05 to 0:5 km!1 (Dainty
and Toksöz 1981). Lee et al. (2003, 2006) analyzed coda envelopes of regional
earthquakes before and after the ScS arrival around 900 s in lapse time from
the origin time using the numerically simulated envelopes based on the multiple
isotropic scattering model with the PREM model for velocity and total attenuation.
They reported lower g0-values in the 4 s and 10 s period bands in the upper mantle
compared with those in the lithosphere. The g0-value becomes much smaller in
the lower mantle. For comparison, the g0-value of long-period Rayleigh waves
propagating completely around the earth is of the order of 10!6 km!1, which is
much smaller than those of S-waves in short periods in the lithosphere (Sato and
Nohechi 2001).

On the basis of the stochastic wave theory for random media, there have been
measurements of the power spectral density function (PSDF) P.m/ of the fractional
velocity fluctuation ıV .x/=V0. Figure 1.4 summarizes recent measurements of the

Fig. 1.4 Measurements of the PSDF of the fractional velocity fluctuation in the lithosphere
and mantle: Teleseismic P-wave envelopesW 1.1 Upper mantle, 1.2 Lower mantle (0:5 ! 2:5 Hz)
(Shearer and Earle 2004), 2 Baltic Shield (0:5 ! 5 Hz) (Hock et al. 2000). S-wave envelopesW
3.1, 3.2, 3.3 Fore-arc, Japan (2 ! 16 Hz) (Saito et al. 2002, 2005; Takahashi et al. 2009), 4.1,
4.2 Kurikoma and Iwate volcanoes (2 ! 16 Hz, 20 ! 60 km in depth), NE Japan (Takahashi et al.
2009), 5.1, 5.2 Scattering loss and S-coda excitation (1 ! 30 Hz) (Sato 1984a, 1990), 6 Crust,
Norway (2 ! 10 Hz) (Przybilla et al. 2009). P- and S-wave envelopesW 7 Upper crust, Nikko, Japan
(8!16 Hz) (Yoshimoto et al. 1997b). Gray bar shows the corresponding frequency range for 4 km/s
velocity

(b) Experim. PSDF of fractional velocity 3
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https://doi.org/10.1038/news.2008.1001
https://doi.org/10.1007/978-3-0348-7722-0\_1


Wave propagation in a heterogeneous medium : geophysics

Examples of heterogeneities

(a) at the global scale 1 (`c ≈ 1000 km) (b) at the local scale (`c ≈ 1 km)

Distribution of fluctuations2 Ru-Shan Wu and Keiiti Aki PAGEOPH, 

1 

O9 

~ Ol 
"6 

~ ~  9 
0.01 _-'- 

[3_ 

___.n.ml n I n iHnl 
0.001 0.01 

(Well-log) 
I I I I I I I I  I I 

' " ' " ' l  ' ' " ' " ' 1  . . . . . . .  '1 . . . . . . . .  t . . . .  '"'l  ' ' " '  

15 9 14 13 

12 

I I Illllli I I Illllll I i Jltiit] 
0.1 1 10 

a (scale length) 

109  8 7 3 U 

11 

I i I l l l l l l  I I I I I l l l l  t I I I I I I I I  

113(3 1000 100C~3 km 

[ ~ - - - ]  Lower Upper ~ Global Well-log 
mantle ~ mantle ~ Libhesphere ~ Athenosphere ~ average i data 

Figure l 
Strength-scale distribution of heterogeneities in the earth, a is the scale length, ~ = (6v/Vo)rms is the velocity 
perturbation index of the heterogeneities. 
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scattering coefficient gm, which is the effective isotropic scattering coefficient in the
multiple scattering regime of nonisotropic scattering process as will be discussed in
Chap. 7.
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10!2 km!1 around 10!2 km!1 for the frequency range of 1 " 30 Hz. A large value
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the diffusion model, the g0-value estimated ranges from 0:05 to 0:5 km!1 (Dainty
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compared with those in the lithosphere. The g0-value becomes much smaller in
the lower mantle. For comparison, the g0-value of long-period Rayleigh waves
propagating completely around the earth is of the order of 10!6 km!1, which is
much smaller than those of S-waves in short periods in the lithosphere (Sato and
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Correlation between properties 4

2214 

TABLE 11. 

FRANCIS BIRCH 

Density, Composition, and Velocity (10 kilobars) for Plagioclase Feldspars 

Rock 

Density, g/cm a Index of 
Feldspar 

Rock Feldspar, Glass 

Proportion of 
Heavy Minerals 
by Volume, % 

Vp, km/sec 
From By sepa- An, 

densities ration mole % Rock Feldspar 

Albitite 2 
Oligoclasite 2 
New Glasgow .2 
Whiteface 2 
Tahawus 2 
Stillwater 2 
Bushveld 2 
Albite 

(extrapolated) 
Anorthite 

(extrapolated) 

615 
687 
708 
712 
768 
770 
807 

2 613 
2 622 
2 694 
2 669 
2 676 
2 735 
2 719 

2.61 

2.76 

1.4904 
1.4970 
1.5379 
1.5300 
1.5285 
1.5640 
1.5532 

0 
8 
0 
5 

12 
5 

12 

3 0.3 3 6.52 6.52 
3 12 6.76 6.67 
6 1.7 59 6.85 6.85 
9 7.4 50 6.91 6.86 
7 49 7.02 6.92 
3 8.3 88 7.10 7.07 
9 12.6 76 7.21 7.13 

0 6.5 

100 7.2 

deviation from the least-squares line is 0.06 
km/sec, or nearly 1 per cent of the velocity. 
Probably the assumptions on which the cor- 
rections are based cannot be relied upon for 
greater precision. The velocities at 10 kilobars 
for the pure end members must be close to 6.5 
kin/see for albite and 7.2 kin/see for anorthite. 

The velocities so found for the feldspars may 
be combined with the velocities found for the 
pyroxcnitcs to give a fair account of the velocities 
in the gabbros. Again only two components are 
considered, the feldspar with velocity as given 
by the corrected line, and a heavy component, 

km/s 

7.0 

6.5 

I 

/ o uncorrected - 

_ •)/ o corrected 

! ! 
2.6 2.7 Density, g/cc 2..8 

Fig. 2. Velocity at 10 kilobars versus density 
for rocks composed mainly of plagioclase feldspar. 
The large circles represent measurements on the 
rocks. Small circles are for the feldspar components 
alone, after correction for the content of heavy 
minerals. 

taken as having a density of 3.4 g/cm 3 and 
velocity 7.9 kin/see for all cases. The proportion 
of heavy component is found from the density. 
The results are shown in Table 12. When the 
same procedure is applied to the diabases, the 
calculated velocities continue to lie close to 7.2 
km/sec, in all cases higher than the measured 
velocities. A single example is given. 

The notable departure from a single-valued 
dependence of velocity on density is illustrated 
in Figure 3, where the (uncorrected) 10-kilobar 
velocities have been plotted against density (at 
I bar) for all the silicate rocks, including meta- 
morphic rocks, and for oxides of iron and 
titanium. Values are also indicated for quasi- 
isotropic aggregates of periclase, spinel, corun- 
dum, futile, several garnets, a quartz and /• 
quartz, and magnetite, calculated from the 
single-crystal constants (Table 8). The apparent 
disorder of this representation is reduced on 
examination of the composition of the substances 
for which the points deviate most widely from 
the main sequence. The points at highest density 
are for the iron and titanium ores; the inter- 
mediate group is for iron-rich silicates and 
ruffle. This suggests the possibility of a correla- 
tion with two principal variables, density and 
iron content, or more generally, heavy metal 
content. 

To avoid consideration of the individual effects 
of all of the chemical components, we shall 
characterize the chemical composition in terms 
of the mean atomic weight which has been shown 
to be a significant physical parameter for silicates 

Figure – Velocity at 10 kilobars versus density for rocks composed mainly of plagioclase feldspar.

4. F. Birch. “The velocity of compressional waves in rocks to 10 kilobars : part 2.”. In : J. Geophys. Res. 66.7 (1961), p. 2199-2224. doi :
10.1029/JZ066i007p02199
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Typical observation : surface accelerograms

(a) Full wave field (b) zoom on the coda

Few well-marked pulses (volume and surface waves) are followed by a seemingly random coda
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Characteristics of coherent pulses versus coda : average medium 5

916 Y. Capdeville, L. Guillot and J.-J. Marigo

Figure 11. Left graph: 1-D section of Vs (Black line) at x2 = 32 km as a function of x1 for the original ‘square’ model (Fig. 2); 1-D section of Vs =
√

cε0,∗
2222/ρ

ε0,∗

(red line) at x2 = 32 km as a function of x1 for the homogenized model. Right graph: 1-D section of the total anisotropy at x2 = 32 km for the original model
(black line) and for the order 0 homogenized model (red line). The total anisotropy is computed, at a given location x, as max{|c∗,ε0 − c∗,ε0

iso |}/max{c∗,ε0
iso },

where the max operator applies to the tensor components and c∗,ε0
iso is the closest isotropic elastic tensor to c∗,ε0 . This function is a non-linear function which

explains the rapid oscillations observed on the total anisotropy (red line, right graph). Individual components of the effective elastic tensor show similar slow
oscillations to the one observed on the left graph.

4.1 First example: square random model

We first apply the non-periodic homogenization procedure to the
random square model described in Section 2.4.1 In Fig. 11 are
shown sections in Vs (left plot) and in the total anisotropy (right
plot) computed from the order 0 homogenized coefficients ρ∗,ε0 and
c∗,ε0 for ε0 = 0.3. At any given location x, the total anisotropy is
defined as: max{|c∗,ε0 − c∗,ε0

iso |}/max{c∗,ε0
iso }, where the max operator

applies to the tensor components and c∗,ε0
iso is the closest isotropic

elastic to c∗,ε0 (in the sens of, e.g. Browaeys & Chevrot 2004).
The homogenized quantities show relatively rapid spatial varia-
tions, but these are smoother than for the original medium. The
apparent anisotropy is significant with average values around 1.5
per cent. In Fig. 12 is shown a comparison of the order 0 homog-
enized solution to the filtered wave velocities solution (alternative
(i) of Section 2.4.1) for source A and receiver 22. In the left column
plots, we compare the x1 component of the order 0 homogenized
velocity ( ˙̂u0

1, in red line) to the reference solution (black line) as a
function of ε0 (from 2.4 to 0.3). On the right column is presented
the same but for the filtered wave velocities solution. It appears
that, when both upscaling processes are used with a large ε0 (i.e.
too much smoothing with respect to λmin), the coda of the direct
wave disappears. Nevertheless, the ballistic P wave has a correct
time arrival for the homogenized solution, whereas this is not the
case for the filtered wave velocities solution. When ε0 decreases,
that is when more and more details are incorporated in the up-
scaled model, the coda wave appears. Nevertheless, once again,
the phase is correctly predicted only for the homogenized solution
and it seems that the filtered velocities solution have a poor con-
vergence with ε0. To look more closely at the convergence issue,
we define the error Ei (u̇) of a solution in velocity u̇ at a given
receiver i

Ei (u̇) =

√∫ tmax
0 (u̇ − u̇ref )2(xi , t)dt

√∫ tmax
0 (u̇ref )2 (xi , t)dt

, (67)

where uref is the reference solution and tmax is here 20 s. We define
the combined error from receiver 5 to receiver 35 (Fig. 3) as

Ec(u̇) = 1
31

35∑

i=5

Ei (u̇) . (68)

In Fig. 13 is shown the error as defined earlier for a wave propaga-
tion computed for source A (Fig. 3) as a function of ε0. It clearly
appears that the error for the filtered wave velocity model solution
has a poor convergence with ε0. Furthermore, as it could already be
seen in Fig. 12, this error is much larger than the one obtained for
the homogenized solution. For the order 0 homogenized solution,
the error Ec( ˙̂u0) decreases first slowly for large ε0. This can be un-
derstood in Fig. 12 (left column): the coda is fully constructed only
for ε0 ≤ 0.6. Once the coda is fully constructed, the convergence is
unexpectedly fast (in between ε2

0 and ε3
0) whereas we should expect

a convergence in ε0 only. This fact certainly implies that, at least for
this specific example, higher order terms of the asymptotic expan-
sion are small with respect to the leading term. This is confirmed
by the introduction of the first order correction in the calculation of
the error Ec( ˙̂u1/2): its effect can be observed only for the smallest
ε0 values. For small ε0, we expect a convergence of the leading term
as ε0, rather than as ε2

0. The effect of the first order correction can
nevertheless clearly be seen by improving the fit for small values of
ε0. This can also be seen in Fig. 14 where the error for the order
0 homogenized solution, Ei ( ˙̂u0), and for the order 0 homogenized
solution supplemented by the first order correction, Ei ( ˙̂u1/2), for
receivers 5 to 35 are plotted as a function of their location along
the x1 axis and for ε0 = 0.15. It clearly appears that, when adding
the first order correction to the leading term of the expansion, the
error is, as expected, always minimized. An interesting observation
is that the error determined for the sole leading term varies more
rapidly with x1 than when the first-order correction is taken into
account. This is expected since the fast scale (y) dependence of
the first order correction implies variations of the wavefield at the
microscopic scale. Note that this error as a function of x1 is largely
under-sampled in Fig. 14 as we only have one receiver every 1 km

C© 2010 The Authors, GJI, 182, 903–922
Journal compilation C© 2010 RAS

(a) Shear velocity map (black)

2-D non-periodic homogenization, PSV case 917

Figure 12. x1 component velocity traces computed for the source A at receiver 22 for the reference solution (black line), for the order 0 homogenized solution
( ˙̂u0

1, left column, red line) and for the velocity filtering upscaled model (right column, red line) for ε0 = 2.4, 1.2, 0.6 and 0.3.

Figure 13. Combined error as defined by eq. (68) as a function of ε0 for
an explosion located in A (Fig. 3) for the solution computed in the velocity
filtering upscaled model (blue line), for the order 0 homogenized solution
( ˙̂u0, in dashed black line) and for the order 0 homogenized plus first-order
correction ( ˙̂u1/2 as defined by (46), in red line).

compared to the 100 m long of the edge of a random element. To
investigate more closely the first-order correction effect, in Fig. 15
is plotted the first-order correction ˙̂u1/2 − ˙̂u0 along the line CD
(Fig. 3) for t = 5.5 s, and compared to u̇re f − ˙̂u0. It appears that

Figure 14. Error for the order 0 homogenized solution, Ei ( ˙̂u0), (black line)
and for the order 0 homogenized solution plus first-order corrector, Ei ( ˙̂u1/2),
(red line) for receivers 5–35 (Fig. 3) plotted as a function of their location
along the x1 axis and for ε0 = 0.15.

the fast oscillations are the same for both curves. The remaining
differences are due to un-computed higher order asymptotic terms.

Finally, in Fig. 16 is shown the leading order moment tensor
correction (52) effect for the source B. It can be seen that the
moment tensor correction and the order 0 homogenized model allow

C© 2010 The Authors, GJI, 182, 903–922
Journal compilation C© 2010 RAS

(b) Solution in average-velocity medium (red) versus true (black)

Propagation in a medium with average velocity does not reproduce the feature of the true
medium :

The coherent pulse is too fast

The coda is lacking

5. Y. Capdeville, L. Guillot et J.-J. Marigo. “2D non-periodic homogenization to upscale elastic media for P-SV waves”. In : Geophys. J. Int. 182.2
(2010), p. 903-922. doi : 10.1111/j.1365-246X.2010.04636.x
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Figure 4. Vertical-component acceleration snapshots for heterogeneous media with (a) 50 m and (b) 5 km correlation length (Figs 1c and 1a), respectively.
Snapshots are taken at 2.0, 3.5, 4.5 and 5.5 s after rupture. The point-source position is indicated by the black star. Both map view and vertical section are
shown. The vertical plane is parallel to the x-axis and cuts the y-axis at 16 km. All panels are shown with same amplitude scale.

constant background speed only show direct P- and S-waves
arrivals due to the medium’s simplicity and the relatively short
source–receiver distance. Synthetics for heterogeneous media con-
serve the strong S-wave phase, especially visible in the transverse
component due to the strike-slip mechanism of the source (simu-
lations for different focal mechanisms confirm this observation).
Moreover, the absence of sharp, strong velocity discontinuities
prevents important wave conversion and reverberation phenom-
ena, potentially able to reduce main peak amplitudes. Coda waves
are strongly excited, with intensities that depend on the medium
e.g. the 50 m correlation length case reveals the lowest coda
amplitudes.

Relative coda amplitudes are also visible in Fig. 4, in which we
show snapshots of acceleration for the free surface and a vertical
plane close to the source (for brevity only the vertical component for
two cases is illustrated; animations for other media and finite-fault
rupture can be found in the e-supplement). These snapshots clearly
show the scattering associated with each model, and the correspond-
ing complex effects on the wavefield. It is possible to appreciate the
difference in wavelength of scattered P- and S waves. The 5-km cor-
relation length model presents a strong main wave front distortion,
due to the relevant heterogeneity size. We also observe particularly
complex waveform patterns, just behind the main wave front, re-
sulting from reflection, diffraction and multipathing phenomena. In
contrast, the 50 m correlation length model, due to the size of the
velocity inhomogeneities, presents less developed scattered waves
and a wave front substantially unperturbed. All snapshots, how-
ever, reveal how scattering extends the ground-motion duration by
exciting coda waves.

4.1 Coda waves analysis

A quantitative estimation of coda waves excitation can be achieved
by calculating the relative energy of coda waves (EC) for each
component,

EC =
∫ 2ts

ts+1.0 x(t)2 dt
∫ 2ts

0 x(t)2 dt
, (5)

where ts indicates the S-wave arrival time and x(t) the time-series.
As indicated, we compute the integral considering the energy in a
time-window beginning immediately after the main S-wave pulse
and terminating at twice its value, thus including only the early coda
(Sato & Fehler 1994). The 1.0 s value corresponds roughly to the
main S-wave pulse width in acceleration. Eq. (5) hence expresses
the energy contribution of the early coda relative to the first 2 ts s
of the seismic trace. Our analysis is limited to early coda because it
is of primary interest in strong ground-motion simulations respect
to late coda. Moreover, the maximum time of our simulations is not
sufficient for an adequate late coda analysis over in most distance
ranges.

In addition, we compute normalized seismogram envelopes as
follows:

y(t) = abs[x(t)] + j∗ H [x(t)]
max{abs[x(ts)] + j∗ H [x(ts)]}

, (6)

where j∗ is the imaginary unit, H the Hilbert transform and ts the
S-wave arrival time. Envelopes can provide a qualitative overview
on the character of the coda decay. We compare values obtained
from our synthetic data with those derived from the multiple
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Figure 4. Vertical-component acceleration snapshots for heterogeneous media with (a) 50 m and (b) 5 km correlation length (Figs 1c and 1a), respectively.
Snapshots are taken at 2.0, 3.5, 4.5 and 5.5 s after rupture. The point-source position is indicated by the black star. Both map view and vertical section are
shown. The vertical plane is parallel to the x-axis and cuts the y-axis at 16 km. All panels are shown with same amplitude scale.

constant background speed only show direct P- and S-waves
arrivals due to the medium’s simplicity and the relatively short
source–receiver distance. Synthetics for heterogeneous media con-
serve the strong S-wave phase, especially visible in the transverse
component due to the strike-slip mechanism of the source (simu-
lations for different focal mechanisms confirm this observation).
Moreover, the absence of sharp, strong velocity discontinuities
prevents important wave conversion and reverberation phenom-
ena, potentially able to reduce main peak amplitudes. Coda waves
are strongly excited, with intensities that depend on the medium
e.g. the 50 m correlation length case reveals the lowest coda
amplitudes.

Relative coda amplitudes are also visible in Fig. 4, in which we
show snapshots of acceleration for the free surface and a vertical
plane close to the source (for brevity only the vertical component for
two cases is illustrated; animations for other media and finite-fault
rupture can be found in the e-supplement). These snapshots clearly
show the scattering associated with each model, and the correspond-
ing complex effects on the wavefield. It is possible to appreciate the
difference in wavelength of scattered P- and S waves. The 5-km cor-
relation length model presents a strong main wave front distortion,
due to the relevant heterogeneity size. We also observe particularly
complex waveform patterns, just behind the main wave front, re-
sulting from reflection, diffraction and multipathing phenomena. In
contrast, the 50 m correlation length model, due to the size of the
velocity inhomogeneities, presents less developed scattered waves
and a wave front substantially unperturbed. All snapshots, how-
ever, reveal how scattering extends the ground-motion duration by
exciting coda waves.

4.1 Coda waves analysis

A quantitative estimation of coda waves excitation can be achieved
by calculating the relative energy of coda waves (EC) for each
component,

EC =
∫ 2ts

ts+1.0 x(t)2 dt
∫ 2ts

0 x(t)2 dt
, (5)

where ts indicates the S-wave arrival time and x(t) the time-series.
As indicated, we compute the integral considering the energy in a
time-window beginning immediately after the main S-wave pulse
and terminating at twice its value, thus including only the early coda
(Sato & Fehler 1994). The 1.0 s value corresponds roughly to the
main S-wave pulse width in acceleration. Eq. (5) hence expresses
the energy contribution of the early coda relative to the first 2 ts s
of the seismic trace. Our analysis is limited to early coda because it
is of primary interest in strong ground-motion simulations respect
to late coda. Moreover, the maximum time of our simulations is not
sufficient for an adequate late coda analysis over in most distance
ranges.

In addition, we compute normalized seismogram envelopes as
follows:

y(t) = abs[x(t)] + j∗ H [x(t)]
max{abs[x(ts)] + j∗ H [x(ts)]}

, (6)

where j∗ is the imaginary unit, H the Hilbert transform and ts the
S-wave arrival time. Envelopes can provide a qualitative overview
on the character of the coda decay. We compare values obtained
from our synthetic data with those derived from the multiple
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Coda sees less directionality effects than first arrivals

6. W. Imperatori et P. M. Mai. “Broad-band near-field ground motion simulations in 3-dimensional scattering media”. In : Geophys. J. Int. 192.2
(2013), p. 725-744. doi : 10.1093/gji/ggs041
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Figure 4. Vertical-component acceleration snapshots for heterogeneous media with (a) 50 m and (b) 5 km correlation length (Figs 1c and 1a), respectively.
Snapshots are taken at 2.0, 3.5, 4.5 and 5.5 s after rupture. The point-source position is indicated by the black star. Both map view and vertical section are
shown. The vertical plane is parallel to the x-axis and cuts the y-axis at 16 km. All panels are shown with same amplitude scale.

constant background speed only show direct P- and S-waves
arrivals due to the medium’s simplicity and the relatively short
source–receiver distance. Synthetics for heterogeneous media con-
serve the strong S-wave phase, especially visible in the transverse
component due to the strike-slip mechanism of the source (simu-
lations for different focal mechanisms confirm this observation).
Moreover, the absence of sharp, strong velocity discontinuities
prevents important wave conversion and reverberation phenom-
ena, potentially able to reduce main peak amplitudes. Coda waves
are strongly excited, with intensities that depend on the medium
e.g. the 50 m correlation length case reveals the lowest coda
amplitudes.

Relative coda amplitudes are also visible in Fig. 4, in which we
show snapshots of acceleration for the free surface and a vertical
plane close to the source (for brevity only the vertical component for
two cases is illustrated; animations for other media and finite-fault
rupture can be found in the e-supplement). These snapshots clearly
show the scattering associated with each model, and the correspond-
ing complex effects on the wavefield. It is possible to appreciate the
difference in wavelength of scattered P- and S waves. The 5-km cor-
relation length model presents a strong main wave front distortion,
due to the relevant heterogeneity size. We also observe particularly
complex waveform patterns, just behind the main wave front, re-
sulting from reflection, diffraction and multipathing phenomena. In
contrast, the 50 m correlation length model, due to the size of the
velocity inhomogeneities, presents less developed scattered waves
and a wave front substantially unperturbed. All snapshots, how-
ever, reveal how scattering extends the ground-motion duration by
exciting coda waves.

4.1 Coda waves analysis

A quantitative estimation of coda waves excitation can be achieved
by calculating the relative energy of coda waves (EC) for each
component,

EC =
∫ 2ts

ts+1.0 x(t)2 dt
∫ 2ts

0 x(t)2 dt
, (5)

where ts indicates the S-wave arrival time and x(t) the time-series.
As indicated, we compute the integral considering the energy in a
time-window beginning immediately after the main S-wave pulse
and terminating at twice its value, thus including only the early coda
(Sato & Fehler 1994). The 1.0 s value corresponds roughly to the
main S-wave pulse width in acceleration. Eq. (5) hence expresses
the energy contribution of the early coda relative to the first 2 ts s
of the seismic trace. Our analysis is limited to early coda because it
is of primary interest in strong ground-motion simulations respect
to late coda. Moreover, the maximum time of our simulations is not
sufficient for an adequate late coda analysis over in most distance
ranges.

In addition, we compute normalized seismogram envelopes as
follows:

y(t) = abs[x(t)] + j∗ H [x(t)]
max{abs[x(ts)] + j∗ H [x(ts)]}

, (6)

where j∗ is the imaginary unit, H the Hilbert transform and ts the
S-wave arrival time. Envelopes can provide a qualitative overview
on the character of the coda decay. We compare values obtained
from our synthetic data with those derived from the multiple
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Figure 4. Vertical-component acceleration snapshots for heterogeneous media with (a) 50 m and (b) 5 km correlation length (Figs 1c and 1a), respectively.
Snapshots are taken at 2.0, 3.5, 4.5 and 5.5 s after rupture. The point-source position is indicated by the black star. Both map view and vertical section are
shown. The vertical plane is parallel to the x-axis and cuts the y-axis at 16 km. All panels are shown with same amplitude scale.

constant background speed only show direct P- and S-waves
arrivals due to the medium’s simplicity and the relatively short
source–receiver distance. Synthetics for heterogeneous media con-
serve the strong S-wave phase, especially visible in the transverse
component due to the strike-slip mechanism of the source (simu-
lations for different focal mechanisms confirm this observation).
Moreover, the absence of sharp, strong velocity discontinuities
prevents important wave conversion and reverberation phenom-
ena, potentially able to reduce main peak amplitudes. Coda waves
are strongly excited, with intensities that depend on the medium
e.g. the 50 m correlation length case reveals the lowest coda
amplitudes.

Relative coda amplitudes are also visible in Fig. 4, in which we
show snapshots of acceleration for the free surface and a vertical
plane close to the source (for brevity only the vertical component for
two cases is illustrated; animations for other media and finite-fault
rupture can be found in the e-supplement). These snapshots clearly
show the scattering associated with each model, and the correspond-
ing complex effects on the wavefield. It is possible to appreciate the
difference in wavelength of scattered P- and S waves. The 5-km cor-
relation length model presents a strong main wave front distortion,
due to the relevant heterogeneity size. We also observe particularly
complex waveform patterns, just behind the main wave front, re-
sulting from reflection, diffraction and multipathing phenomena. In
contrast, the 50 m correlation length model, due to the size of the
velocity inhomogeneities, presents less developed scattered waves
and a wave front substantially unperturbed. All snapshots, how-
ever, reveal how scattering extends the ground-motion duration by
exciting coda waves.

4.1 Coda waves analysis

A quantitative estimation of coda waves excitation can be achieved
by calculating the relative energy of coda waves (EC) for each
component,

EC =
∫ 2ts

ts+1.0 x(t)2 dt
∫ 2ts

0 x(t)2 dt
, (5)

where ts indicates the S-wave arrival time and x(t) the time-series.
As indicated, we compute the integral considering the energy in a
time-window beginning immediately after the main S-wave pulse
and terminating at twice its value, thus including only the early coda
(Sato & Fehler 1994). The 1.0 s value corresponds roughly to the
main S-wave pulse width in acceleration. Eq. (5) hence expresses
the energy contribution of the early coda relative to the first 2 ts s
of the seismic trace. Our analysis is limited to early coda because it
is of primary interest in strong ground-motion simulations respect
to late coda. Moreover, the maximum time of our simulations is not
sufficient for an adequate late coda analysis over in most distance
ranges.

In addition, we compute normalized seismogram envelopes as
follows:

y(t) = abs[x(t)] + j∗ H [x(t)]
max{abs[x(ts)] + j∗ H [x(ts)]}

, (6)

where j∗ is the imaginary unit, H the Hilbert transform and ts the
S-wave arrival time. Envelopes can provide a qualitative overview
on the character of the coda decay. We compare values obtained
from our synthetic data with those derived from the multiple
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Figure 4. Vertical-component acceleration snapshots for heterogeneous media with (a) 50 m and (b) 5 km correlation length (Figs 1c and 1a), respectively.
Snapshots are taken at 2.0, 3.5, 4.5 and 5.5 s after rupture. The point-source position is indicated by the black star. Both map view and vertical section are
shown. The vertical plane is parallel to the x-axis and cuts the y-axis at 16 km. All panels are shown with same amplitude scale.

constant background speed only show direct P- and S-waves
arrivals due to the medium’s simplicity and the relatively short
source–receiver distance. Synthetics for heterogeneous media con-
serve the strong S-wave phase, especially visible in the transverse
component due to the strike-slip mechanism of the source (simu-
lations for different focal mechanisms confirm this observation).
Moreover, the absence of sharp, strong velocity discontinuities
prevents important wave conversion and reverberation phenom-
ena, potentially able to reduce main peak amplitudes. Coda waves
are strongly excited, with intensities that depend on the medium
e.g. the 50 m correlation length case reveals the lowest coda
amplitudes.

Relative coda amplitudes are also visible in Fig. 4, in which we
show snapshots of acceleration for the free surface and a vertical
plane close to the source (for brevity only the vertical component for
two cases is illustrated; animations for other media and finite-fault
rupture can be found in the e-supplement). These snapshots clearly
show the scattering associated with each model, and the correspond-
ing complex effects on the wavefield. It is possible to appreciate the
difference in wavelength of scattered P- and S waves. The 5-km cor-
relation length model presents a strong main wave front distortion,
due to the relevant heterogeneity size. We also observe particularly
complex waveform patterns, just behind the main wave front, re-
sulting from reflection, diffraction and multipathing phenomena. In
contrast, the 50 m correlation length model, due to the size of the
velocity inhomogeneities, presents less developed scattered waves
and a wave front substantially unperturbed. All snapshots, how-
ever, reveal how scattering extends the ground-motion duration by
exciting coda waves.

4.1 Coda waves analysis

A quantitative estimation of coda waves excitation can be achieved
by calculating the relative energy of coda waves (EC) for each
component,

EC =
∫ 2ts

ts+1.0 x(t)2 dt
∫ 2ts

0 x(t)2 dt
, (5)

where ts indicates the S-wave arrival time and x(t) the time-series.
As indicated, we compute the integral considering the energy in a
time-window beginning immediately after the main S-wave pulse
and terminating at twice its value, thus including only the early coda
(Sato & Fehler 1994). The 1.0 s value corresponds roughly to the
main S-wave pulse width in acceleration. Eq. (5) hence expresses
the energy contribution of the early coda relative to the first 2 ts s
of the seismic trace. Our analysis is limited to early coda because it
is of primary interest in strong ground-motion simulations respect
to late coda. Moreover, the maximum time of our simulations is not
sufficient for an adequate late coda analysis over in most distance
ranges.

In addition, we compute normalized seismogram envelopes as
follows:

y(t) = abs[x(t)] + j∗ H [x(t)]
max{abs[x(ts)] + j∗ H [x(ts)]}

, (6)

where j∗ is the imaginary unit, H the Hilbert transform and ts the
S-wave arrival time. Envelopes can provide a qualitative overview
on the character of the coda decay. We compare values obtained
from our synthetic data with those derived from the multiple
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Figure 4. Vertical-component acceleration snapshots for heterogeneous media with (a) 50 m and (b) 5 km correlation length (Figs 1c and 1a), respectively.
Snapshots are taken at 2.0, 3.5, 4.5 and 5.5 s after rupture. The point-source position is indicated by the black star. Both map view and vertical section are
shown. The vertical plane is parallel to the x-axis and cuts the y-axis at 16 km. All panels are shown with same amplitude scale.

constant background speed only show direct P- and S-waves
arrivals due to the medium’s simplicity and the relatively short
source–receiver distance. Synthetics for heterogeneous media con-
serve the strong S-wave phase, especially visible in the transverse
component due to the strike-slip mechanism of the source (simu-
lations for different focal mechanisms confirm this observation).
Moreover, the absence of sharp, strong velocity discontinuities
prevents important wave conversion and reverberation phenom-
ena, potentially able to reduce main peak amplitudes. Coda waves
are strongly excited, with intensities that depend on the medium
e.g. the 50 m correlation length case reveals the lowest coda
amplitudes.

Relative coda amplitudes are also visible in Fig. 4, in which we
show snapshots of acceleration for the free surface and a vertical
plane close to the source (for brevity only the vertical component for
two cases is illustrated; animations for other media and finite-fault
rupture can be found in the e-supplement). These snapshots clearly
show the scattering associated with each model, and the correspond-
ing complex effects on the wavefield. It is possible to appreciate the
difference in wavelength of scattered P- and S waves. The 5-km cor-
relation length model presents a strong main wave front distortion,
due to the relevant heterogeneity size. We also observe particularly
complex waveform patterns, just behind the main wave front, re-
sulting from reflection, diffraction and multipathing phenomena. In
contrast, the 50 m correlation length model, due to the size of the
velocity inhomogeneities, presents less developed scattered waves
and a wave front substantially unperturbed. All snapshots, how-
ever, reveal how scattering extends the ground-motion duration by
exciting coda waves.

4.1 Coda waves analysis

A quantitative estimation of coda waves excitation can be achieved
by calculating the relative energy of coda waves (EC) for each
component,

EC =
∫ 2ts

ts+1.0 x(t)2 dt
∫ 2ts

0 x(t)2 dt
, (5)

where ts indicates the S-wave arrival time and x(t) the time-series.
As indicated, we compute the integral considering the energy in a
time-window beginning immediately after the main S-wave pulse
and terminating at twice its value, thus including only the early coda
(Sato & Fehler 1994). The 1.0 s value corresponds roughly to the
main S-wave pulse width in acceleration. Eq. (5) hence expresses
the energy contribution of the early coda relative to the first 2 ts s
of the seismic trace. Our analysis is limited to early coda because it
is of primary interest in strong ground-motion simulations respect
to late coda. Moreover, the maximum time of our simulations is not
sufficient for an adequate late coda analysis over in most distance
ranges.

In addition, we compute normalized seismogram envelopes as
follows:

y(t) = abs[x(t)] + j∗ H [x(t)]
max{abs[x(ts)] + j∗ H [x(ts)]}

, (6)

where j∗ is the imaginary unit, H the Hilbert transform and ts the
S-wave arrival time. Envelopes can provide a qualitative overview
on the character of the coda decay. We compare values obtained
from our synthetic data with those derived from the multiple

 at U
niversity of C

alifornia, B
erkeley on July 2, 2014

http://gji.oxfordjournals.org/
D

ow
nloaded from
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Coda sees less directionality effects than first arrivals

Influence of λ/`c on relative amplitude of pulses and coda

6. W. Imperatori et P. M. Mai. “Broad-band near-field ground motion simulations in 3-dimensional scattering media”. In : Geophys. J. Int. 192.2
(2013), p. 725-744. doi : 10.1093/gji/ggs041
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7. C. Frohlich et Y. Nakamura. “The physical mechanisms of deep moonquakes and intermediate-depth earthquakes : how similar and how different ?”
In : Phys. Earth Planetary Interiors 173 (2009), p. 365-374. doi : 10.1016/j.pepi.2009.02.004
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2 1 Introduction

Fig. 1.1 (a) Epicenter (star) of an MW 4:8 earthquake with 55.3 km in focal depth and Hi-net
stations (reversed triangles) of NIED in Honshu, Japan. (b) Velocity seismograms (horizontal
transverse component) arranged from bottom to top by increasing epicentral distance, where the
gain is the same for all the traces. (c) Magnification of 200 times

each other independent of epicentral distance at large lapse times. Aki (1969) first
focused interest on the appearance of continuous wave trains in the tail portion
of individual seismograms of local earthquakes as direct evidence of the random
heterogeneity of the lithosphere. These wave trains, which Aki named “coda,” look

Coda amplitude at long times is less
dependent on distance to source L
than first arrivals

8. H. Sato, M. C. Fehler et T. Maeda. Seismic wave propagation and scattering in the heterogeneous earth. Second Edition. Springer, 2012
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Energy tends to spread uniformly over all possible modes

9. S. Khazaie et R. Cottereau. “Influence of local cubic anisotropy on the transition towards an equipartition regime in a 3D texture-less random elastic
medium”. In : Wave Motion 96.102574 (2020), p. 1-18. doi : 10.1016/j.wavemoti.2020.102574
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Weak Localization of Seismic Waves

E. Larose,1 L. Margerin,1,* B. A. van Tiggelen,2 and M. Campillo1,2
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We report the observation of weak localization of seismic waves in a natural environment. It emerges
as a doubling of the seismic energy around the source within a spot of the width of a wavelength, which
is several tens of meters in our case. The characteristic time for its onset is the scattering mean-free time
that quantifies the internal heterogeneity.

DOI: 10.1103/PhysRevLett.93.048501 PACS numbers: 91.30.Fn, 42.25.Dd, 46.40.Cd, 91.30.Tb

Weak localization (WL) is a manifestation of interfer-
ence of multiply scattered waves in disordered media and
was first discovered 20 years ago in quantum physics. It
was recognized to be at the origin of novel features in the
electronic magnetoresistance at low temperatures [1–3],
and a genuine explosion of mesoscopic physics followed.
The discovery of WL constituted the desired counter-
example of the one-century old assertion that multiple
scattering of waves destroys wave phenomena, reducing it
conveniently to classical radiative transfer, where waves
are treated similar to hard spheres colliding with ob-
stacles. In optics [4–6] and in acoustics [7] the effect is
better known as coherent backscattering, where it was
shown to be an accurate way to measure transport
mean-free paths or diffusion constants. This feature finds
its origin in the constructive interference between long
reciprocal paths in wave scattering [8,9]. This enhances
the probability to return to the source by a factor of
exactly 2, which results in the local energy density en-
hancement by the same factor. In seismic experiments, we
expect WL to appear as an enhancement of seismic en-
ergy in the vicinity of a source [10,11].

In the heterogeneous Earth, the wave propagation be-
comes complex and wave scattering results in a ‘‘seismic
coda’’ [12], which forms the tail of the seismograms. The
coda is not always processed, because it is believed not to
contain any structural information that is easily extract-
able using standard imaging techniques. Nevertheless,
coda energy decay is widely recognized to be sensitive
to the regional geological environment. During the past
two decades, radiative transfer was successfully intro-
duced to model the energy decay of coda waves [12]. It
describes the transport of the wave energy in space and
time, but does not take into account phase information.
Radiative transfer predicts the equipartition of waves
among different modes [13] which has been observed
[14], leading to new approaches for processing coda waves
[15,16]. However, the WL effect has never been observed
in seismology. The aim of this work is to show the
relevance of mesoscopic physics to seismology and its

necessity to interpret observed seismic records. In this
Letter, we present the first observation of WL of seismic
waves.

The seismic experiments were undertaken at the Puy
des Goules volcano (central France).Volcanoes are known
to be very heterogeneous and might guarantee multiple
scattering [17]. A sketch of the experimental setup is
displayed in Fig. 1. We have measured the vertical ground
motion using a linear array of 23 geophones separated by
2.5 m. The ground motion is the result of a sledgehammer
strike at time t ! 0 on a 20 cm" 20 cm aluminum plate
which was repeated 50 times for each location.

FIG. 1 (color online). Experimental setup. Solid and dashed
arrows illustrate reciprocal scattered wave paths.
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(a) Experimental setup

receiver every 5 m along the array, which provides a total
of 12 different configurations. For a diffuse field, the
correlation length is !=2 [20], which implies that each
of these measurements corresponds to an independent
source-receiver configuration for wavelengths of 10 m
or less. For larger wavelengths, statistical correlations
still persist, which may degrade the ensemble-averaging
process.

To evaluate the spatial enhancement of energy S!!r",
we normalize the average energy hECi around the source
by its measured average value hEDi sufficiently far away
(15 m) from the source where the energy density is
independent of the source-receiver distance !r. The theo-
retical prediction for S!!r" at the free surface of an elastic
body was obtained in [19]. The vertical force generates
both bulk and Rayleigh waves, which undergo mode con-
versions resulting in equipartition in phase space [13,14].
While both waves play a part in the dynamics of scatter-
ing, the Rayleigh waves dominate the local energy at the
free surface once equipartition is established. As a result,
the rigorous expression obtained in Ref. [19] can be
approximated by the profile predicted for 2D random
media [21]:

S!!r" # hECi
hEDi

$ 1% J20!2"!r=!"; (2)

where ! is the wavelength of the predominant Rayleigh
waves and J0 is the Bessel function. Note that for the
near-field regime the size of the WL spot is independent
of elapsed time t, contrary to the far field regime [7].

The energy distribution E!t" at each sensor is inte-
grated over one sliding window of one cycle duration.
The dynamics are studied by analyzing the signals in
nonoverlapping time windows of 0.4 s duration. In each
window, E!t" is normalized at each time t by the maxi-
mum over the array, and then averaged over the 12
configurations with equal !r. This procedure compen-
sates for the exponential decay of the total energy, and
provides an unbiased average over the different strikes.
Finally, we integrate the normalized, averaged energy
hE!t;!r"i over the entire time window. S is then computed
from Eq. (2).

In Fig. 3, we plot the seismic energy around 20 Hz
measured in the coda as a function of source-sensor
distance, and for three specific 0.4 s windows. Around
0.3 s only simply reflected waves are recorded and no
energy enhancement is visible around the source. The
remaining fluctuations are ascribed to the incomplete
suppression of speckle. As from 0.7 s, WL is observed
with a gradually increasing enhancement factor at the
source. After 1.7 s, the profile including the enhancement
factor 2 has stabilized, as predicted by the theory for WL
in the near field. Therefore, we attribute this enhancement
to WL. According to Eq. (2), the spot has a spatial extent
equal to the wavelength !. This gives the estimate c &

260 m=s for the phase velocity of the Rayleigh waves
around 20 Hz. Since at least two scattering events are
necessary to generate the enhancement effect, the rise of
the enhancement factor corresponds to the transition
from the simple to the multiple scattering regime. It
was verified in numerical studies [10] that the character-
istic time governing the rise of the enhancement factor is
the scattering mean-free time #. We thus conclude that
this important time scale is of the order of 0.7 s around
20 Hz. For a velocity c & 300 m=s, this implies a scatter-
ing mean-free path ‘ $ 200 m. We emphasize that this
parameter is very difficult to measure with traditional
techniques based on attenuation studies because absorp-
tion is hard to separate from scattering effects.

We have finally studied the frequency dependence of
WL. To this end, the seismograms were filtered in three
consecutive frequency bands, and the energy profiles were
computed as above, though now averaged over the entire
coda that exhibits the stabilization of the enhancement S
(Fig. 4). Three different WL widths are observed. The
values for the wavelengths estimated from a fit to Eq. (2)
have been indicated. We have separately measured the
wavelength of Rayleigh waves from a dispersion analysis
of direct arrivals in the original records. Both estimates
of the wavelength are consistent and indicate a significant
dispersion due to the depth dependence of elastic proper-
ties. As a result, the spatial width of WL depends non-
trivially upon frequency. Future studies might even
reveal the frequency dependence of the scattering mean-
free path ‘, which would provide precious information on
the nature of the heterogeneity.

In conclusion, we have observed weak localization of
seismic waves in a shallow volcanic structure, both in
space and time. The observation is in good agreement
with the near-field theory for weak localization, which
predicts a size of one wavelength for the enhancement
spot. The study of this effect turns out to offer a unique

−20 −10 0 10 20

1

2

meters

S
(∆

 r
)

1.7 s
0.7 s
0.3 s

FIG. 3. Energy ratio S!!r" around 20 Hz as a function of
source-receiver distance !r for three different lapse times. The
WL effect sets in at a time of roughly 0.7 s , and is fully
stabilized at 1.7 s.
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(b) Evolution of (normalized) energy in space

Part of the energy of the coda returns and localizes close to the source position

10. E. Larose et al. “Weak localization of seismic waves”. In : Phys. Rev. Lett. 93.4 (2004), p. 048501. doi : 10.1103/PhysRevLett.93.048501
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Wave propagation in granular media

Vibrations in a ballasted railway track 11

Pressure waves in granular media (`c ≈ 10 cm) Recommended Ba l l as t Gradat ions 371
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Figure 15.3 Ballast particle size distribution limit curves according to French Railways (modified after
Profillidis, [12]).

Table 15.6 Ballast gradation used by the British
Railways (after Profillidis, [12]).

Sieve size (mm) % passing

50 100
28 <20
14 0

15.3 GRADATION EFFECTS ON SETTLEMENT AND
BALLAST BREAKAGE

To evaluate the effects of particle size distribution on the deformation and degradation
behaviour of ballast, Indraratna et al. [13] conducted cyclic triaxial tests on four
different gradations of ballast, as shown in Figure 15.4. Cylindrical ballast specimens
were subjected to an effective confining pressure of 45 kPa. To simulate the train axle
loads running at high speed, cyclic loading with a maximum deviator stress qmax of
300 kPa was applied on the ballast specimens at a frequency of 20 Hz.

Figure 15.5 shows the effects of grain size distribution on the axial and volumetric
strains of ballast under cyclic loading. The test results reveal that very uniform to
uniform samples give higher axial and volumetric strains. This is attributed to the looser
states of the specimens prior to cyclic loading. In contrast, gap-graded and moderately-
graded distributions provided denser packing with a higher co-ordination number.
Therefore, these gradations provided higher shear strength and thus, decreased the
settlement.

Figure 15.6 illustrates the relationship between the uniformity coefficient (Cu) and
particle breakage. The test results indicate that ballast breakage decreases as the value
of Cu increases, with the exception of the gap graded specimen. The gap-graded ballast

© 2011 by Taylor and Francis Group, LLC
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FIG. 1. Ultrasonic signals measured by a 12-mm-diam transducer in glass bead packings of different sizes under external normal
stress P ≠ 0.75 MPa at (a) d ≠ 0.2 0.3 mm, (b) d ≠ 0.4 0.8 mm, (c) d ≠ 1.5 6 0.15 mm. E and R correspond, respectively,
to the coherent ballistic pulse and its echo reflected from the bottom and top surfaces. S is associated with multiply scattered sound
waves. The inset of (a) shows a schematic diagram of the apparatus: T and D are, respectively, the ultrasonic emitter and detector.
Note the different time scale in (a).

using a digital oscilloscope and sent to a microcomputer
for processing.
Figure 1 illustrates ultrasonic signals transmitted

through packings of beads of three different sizes (obtained
from Centraver): (a) Polydisperse d ≠ 0.2 0.3 mm; (b)
polydisperse d ≠ 0.4 0.8 mm; (c) d ≠ 1.5 6 0.15 mm,
under an external load P ≠ 0.75 MPa. They are detected
with the large transducer, placed at the same reduced
distance Lyd ¯ 18 away from the source. To ascertain
that the ultrasound propagates from one grain to its
neighbors only through their mutual contacts and not via
air, we have checked that no ultrasonic signal is detected
at vanishing external load. This test, together with the
sound velocity measurements described below (Fig. 4),
ensures that sound transmission through the interstitial
fluid, i.e., Biot’s slow wave [9], is not involved in our
experiments.
We first investigate the features common to all of

the signals. Let us, for example, focus on the packing
of intermediate size beads sd ≠ 0.4 0.8 mmd. As seen
in Fig. 1b, the detected ultrasonic signal is basically
composed of two parts: (i) an early well-defined short
pulse, which we label E, (ii) closely followed by an
irregular signal, S, which spreads over a time interval of
hundreds of ms. We determine a time of flight associated
with the arrival of the E pulse front, measured at an
amplitude of 5% of the peak-to-peak one, from which we
obtain a velocity, Veff ≠ 1070 6 30 mys. By performing
a separate spectral analysis of E and S, we find (Fig. 2)
that E carries a rather narrow band of low frequencies,
while S has a broadband strongly irregular high frequency
spectrum.
On the other hand, we have investigated the effect of

detector size. Figure 3a shows the signal detected by the
small (2 mm wide) transducer on a packing of the same
beads under the same load as in Fig. 1b. It is clearly
seen that reducing the detector size leads to a considerable
enhancement of the amplitude of S relative to E. Note
that the irregular temporal fluctuations associated with S
remain stable over the duration (typically ,1 min) of an
experimental run. We have ascertained this by checking
the reproducibility of the signal as well as its stability
against the number (50 to 100) of repetitive averaging.

That is, no “aging effect” is observed on this time scale.
However, a weak evolution of the signals is identifiable
on much longer time scales. A systematic study of this
effect is in progress.
A fundamental difference between E and S lies in their

sensitivity to changes in packing configurations. This
appears when comparing a first signal measured under
a static load P with that detected after performing a
“loading cycle,” i.e., complete unloading, then reloading
to the same P level. As illustrated in Fig. 3, S is highly
nonreproducible, i.e., configuration sensitive. However,
E exhibits a reversible behavior. More precisely, we
characterize its degree of reproducibility by adjusting the
reloading level to the value P0 which yields the best
superposition between the two E signals. We find that
DPyP ≠ sP0 2 PdyP is always no more than a few
percent—for example, for the 0.4–0.8 mm bead packings
at P ¯ 0.75 MPa, DPyP # 4%.
From these experimental results, we can reasonably

infer that E is a self-averaging signal, which thus probes
sound propagation in an equivalent effective medium.
This we confirm by determining its group velocity Vg
from the phase spectrum of E alone, as windowed out
of the total signal. This analysis is performed without
deconvoluting the excitation pulse: Indeed, the known
electric input pulse shape does not give any direct
access to the excitation energy really injected through the
transducer-granular medium inhomogeneous contact. The
frequency dependence of the phase is linear, indicating

FIG. 2. Spectra of the E and S signals windowed from the
total temporal response. The spectrum of the injected pulse
(source) is given for comparison.

1864

11. X. Jia, C. Caroli et B. Velicky. “Ultrasound propagation in exernally stressed granular media”. In : Phys. Rev. Lett. 82.9 (1999), p. 1863-1866. doi :
10.1103/PhysRevLett.82.1863

B. Indraratna, W. Salim et C. Rujikiatkamjorn. Advanced rail geotechnology. Ballasted track. CRC Press, 2011
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Strong (Anderson) localization 12

(a) t = 0.135 s (b) t = 0.225 s (c) t = 0.315 s

(d) t = 0.405 s (e) t = 0.495 s (f) t = 0.585 s

Figure – Normalized displacement fields in the ballasted railway track.

12. L. de Abreu Corrêa, R. Cottereau et B. Faure. “Dispersion analysis in ballasted railway tracks and Anderson localization in granular media”. In :
J. Sound Vib. 465.115010 (2019), p. 1-13. doi : 10.1016/j.jsv.2019.115010
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Wave propagation in polycrystalline materials

Damage in polycrystalline materials 13

Ultrasonic waves in polycrystalline materials (`c ≈ 10 µm)

establish the conditional distributions of the marks from the best-fit
tessellation sample. The approach taken is to divide the mark data
into Ng groups, which are grouped according to the average distance
of the closest Nn nucleation sites for a given mark. The group
boundaries are determined such that all the groups have the same
amount of data. For this example Ng ¼ 5 is chosen because it is
the largest number of groups to obtain sufficiently resolved empiri-
cal PDFs given the limited amount of data, and Nn ¼ 5 because it is

heuristically determined to sufficiently identify the dependence of
the marks on the nucleation site configuration.

The vector (intra-grain) components of the marks exhibit statis-
tical dependence. The velocity components per grain are strongly
correlated with an average correlation coefficient of :85. A negative
correlation is observed between the Euler angles U0 and u02 of the
ellipsoid orientation having a correlation coefficient of ":6. All
other parameter pairs have correlation coefficient smaller than
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Fig. 13. Empirical PDFs morphological features and image of simulated EGT model: (a) grain size (lm3) PDF, (b) best-fit ellipsoid ratio A
B PDF, (c) best-fit ellipsoid ratio A

C PDF,
(d) number of neighbors per grain PMF and (e) realization of EGT model.

K. Teferra, L. Graham-Brady / Computational Materials Science 102 (2015) 57–67 65

13. Tie2010
P. Mu. “Study of crack initiation in low-cycle fatigue of an austenitic stainless steel”. Thèse de doct. France : École Centrale de Lille, 2011
K. Teferra et L. Graham-Brady. “Tesselation growth models for polycrystalline microstructures”. In : Comp. Mat. Sci. 102 (2015), p. 57-67. doi :
10.1016/j.commatsci.2015.02.006
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Summary of general observations

There are two phases with very different features in recordings : the first pulses (coherent)
and the coda (incoherent)

The coherent pulses

Seem deterministic with an amplitude strongly dependent on distance to source L

Have strong directionality/anisotropy features

Are not sensitive to the particular realization of heterogeneity

Are stronger (relatively to coda) when weak heterogeneities fluctuate faster than wavelength
λ� `c and σ � 1

The coda

Seems random with an amplitude independent (at late times) on L

Seems to propagate isotropically

Is sensitive to the particular realization of heterogeneity

Is stronger when λ ≈ `c and σ ≈ 1

Homogenized models should be able to reproduce these features, random and deterministic
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Outline

1 Waves in heterogeneous media : examples and general observations

2 Identification of scaling regimes
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Identification of scaling regimes 14

70 4 Effective Properties of Randomly Layered Media

How can we characterize this equivalent medium? We start by writing the
medium parameters in the form

ρ = ρ(z/l) , K = K(z/l) , (4.19)

with l a parameter that can be viewed as the layer size. Thus, ρ(z) is the
variable density when observed through a magnifying glass with magnification
factor 1/l. We then observe the fluctuations on their natural or intrinsic scale
of variation. Typically, we will model ρ(z) as a stationary random process.
We discuss this modeling in more detail in Section 4.5. We consider a model
as shown in Figure 4.3:

ρ =




ρ0 if z < 0 ,
ρl(z) := ρ(z/l) if z ∈ [0, L] ,
ρ1 if z > L ,

(4.20)

K =





K0 if z < 0 ,
Kl(z) := K(z/l) if z ∈ [0, L] ,
K1 if z > L .

(4.21)

In later chapters we will also consider wave propagation in three-dimensional
layered media. An example is shown schematically in Figure 4.4. where a
point source emits a spherical pulse that is incident on a heterogeneous, lay-
ered section. Before addressing the limit problem l→ 0, we introduce several
important transformations of the wave equations.

z = Lz = 0

Fig. 4.3. Schematic of a heterogeneous slab embedded between two homogeneous
half-spaces, with a pulse incident from the left.

4.3 Boundary Conditions and Equations for Right- and
Left-Going Modes

As shown before, in Section 3.2, in each homogeneous half-space the wave can
be decomposed into a right-going wave Aj and a left-going wave Bj (j = 0
for the left half-space and j = 1 for the right half-space):

u(t, z) = ζ
−1/2
0

A0(t, z) + B0(t, z)

2
, p(t, z) = ζ

1/2
0

A0(t, z)−B0(t, z)

2
, z < 0 ,

u(t, z) = ζ
−1/2
1

A1(t, z) + B1(t, z)

2
, p(t, z) = ζ

1/2
1

A1(t, z)−B1(t, z)

2
, z > L,

Let us consider the 1D heterogeneous acoustic wave equation in a slab in between two
homogeneous half-spaces

ρ(z)
∂u

∂t
+
∂p

∂z
= F (t, z)

1

K(z)

∂p

∂t
+
∂u

∂z
= 0

14. J.-P. Fouque et al. Wave propagation and time reversal in randomly layered media. T. 56. Stochastic Modelling and Applied Probability. Springer, 2007
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Modeling of the random medium

70 4 Effective Properties of Randomly Layered Media

How can we characterize this equivalent medium? We start by writing the
medium parameters in the form

ρ = ρ(z/l) , K = K(z/l) , (4.19)

with l a parameter that can be viewed as the layer size. Thus, ρ(z) is the
variable density when observed through a magnifying glass with magnification
factor 1/l. We then observe the fluctuations on their natural or intrinsic scale
of variation. Typically, we will model ρ(z) as a stationary random process.
We discuss this modeling in more detail in Section 4.5. We consider a model
as shown in Figure 4.3:

ρ =




ρ0 if z < 0 ,
ρl(z) := ρ(z/l) if z ∈ [0, L] ,
ρ1 if z > L ,

(4.20)

K =





K0 if z < 0 ,
Kl(z) := K(z/l) if z ∈ [0, L] ,
K1 if z > L .

(4.21)

In later chapters we will also consider wave propagation in three-dimensional
layered media. An example is shown schematically in Figure 4.4. where a
point source emits a spherical pulse that is incident on a heterogeneous, lay-
ered section. Before addressing the limit problem l→ 0, we introduce several
important transformations of the wave equations.

z = Lz = 0

Fig. 4.3. Schematic of a heterogeneous slab embedded between two homogeneous
half-spaces, with a pulse incident from the left.

4.3 Boundary Conditions and Equations for Right- and
Left-Going Modes

As shown before, in Section 3.2, in each homogeneous half-space the wave can
be decomposed into a right-going wave Aj and a left-going wave Bj (j = 0
for the left half-space and j = 1 for the right half-space):

u(t, z) = ζ
−1/2
0

A0(t, z) + B0(t, z)

2
, p(t, z) = ζ

1/2
0

A0(t, z)−B0(t, z)

2
, z < 0 ,

u(t, z) = ζ
−1/2
1

A1(t, z) + B1(t, z)

2
, p(t, z) = ζ

1/2
1

A1(t, z)−B1(t, z)

2
, z > L,

The bulk modulus is modeled as a mean-zero stationary random process νK

ρ(z) = ρ,
1

K(z)
=





1
K

if z < 0
1
K

(1 + ενK (z)) if z ∈ [0, L]
1
K

if z > L

.

with standard deviation and correlation length

σ2 = E
[
νK (z0)2

]
, σ2`c =

∫

R
E [νK (z0)νK (z0 + z)] dz.

Finally, the random process is rescaled

νK (z) = σν

(
z

`c

)
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Modeling of the source term

70 4 Effective Properties of Randomly Layered Media

How can we characterize this equivalent medium? We start by writing the
medium parameters in the form

ρ = ρ(z/l) , K = K(z/l) , (4.19)

with l a parameter that can be viewed as the layer size. Thus, ρ(z) is the
variable density when observed through a magnifying glass with magnification
factor 1/l. We then observe the fluctuations on their natural or intrinsic scale
of variation. Typically, we will model ρ(z) as a stationary random process.
We discuss this modeling in more detail in Section 4.5. We consider a model
as shown in Figure 4.3:

ρ =




ρ0 if z < 0 ,
ρl(z) := ρ(z/l) if z ∈ [0, L] ,
ρ1 if z > L ,

(4.20)

K =





K0 if z < 0 ,
Kl(z) := K(z/l) if z ∈ [0, L] ,
K1 if z > L .

(4.21)

In later chapters we will also consider wave propagation in three-dimensional
layered media. An example is shown schematically in Figure 4.4. where a
point source emits a spherical pulse that is incident on a heterogeneous, lay-
ered section. Before addressing the limit problem l→ 0, we introduce several
important transformations of the wave equations.

z = Lz = 0

Fig. 4.3. Schematic of a heterogeneous slab embedded between two homogeneous
half-spaces, with a pulse incident from the left.

4.3 Boundary Conditions and Equations for Right- and
Left-Going Modes

As shown before, in Section 3.2, in each homogeneous half-space the wave can
be decomposed into a right-going wave Aj and a left-going wave Bj (j = 0
for the left half-space and j = 1 for the right half-space):

u(t, z) = ζ
−1/2
0

A0(t, z) + B0(t, z)

2
, p(t, z) = ζ

1/2
0

A0(t, z)−B0(t, z)

2
, z < 0 ,

u(t, z) = ζ
−1/2
1

A1(t, z) + B1(t, z)

2
, p(t, z) = ζ

1/2
1

A1(t, z)−B1(t, z)

2
, z > L,

We introduce a point source located in the left homogeneous half-space at some z0 < 0

F (t, z) = ζ
1/2

g(t)δ(z − z0)

We define the pulse width

T 2
0 =

∫
R(t − T )2g2(t)dt∫

R g2(t)dt
, where, T =

∫
R tg2(t)dt∫
R g2(t)dt

and the typical frequency ω0 = 2π/T0, so that we use the normalized pulse shape

g(t) = f (ω0t)

NB : in our applications, the carrier frequency and the bandwidth are of the same order of
magnitude : ω0
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The dimensionless wave equation
We finally rescale time and space as

z̃ =
z

L
, t̃ =

ct

L

where L is the typical wave propagation distance and c2 = K/ρ is a reference speed of
propagation. Introducing also ζ = ρc, we obtain the normalized pressure and velocity fields

p̃(t̃, z̃) = ζ
−1/2

p

(
t̃
L

c
, z̃L

)
, ũ(t̃, z̃) = ζ

1/2
u

(
t̃
L

c
, z̃L

)

and, using the dimensionless wave equation

∂ũ

∂ t̃
+
∂p̃

∂z̃
= f

(
t̃
ω0L

c

)
δ(z̃ − z̃0)

(
1 + σν

(
z̃
L

`c

))
∂p̃

∂ t̃
+
∂ũ

∂z̃
= 0

Three independent dimensionless group of parameters appear

1 The strength of fluctuations σ

2 Two length ratios : L/`c and ω0L/c ≈ L/λ.

Dynamic homogenization : what happens to the wave field in the different dynamical regimes
(defined by the relative values of the above coefficients)
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The scaling regimes
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The scaling regimes

High-frequency homogenization
`c ⇡ � << L, weak heterogeneity

Radiative Transfer Equation [Ryzhik et al., 1996 ; Margerin, 2005 ; Baydoun et al., 2014]

Projection of energy density on background modes

d⌧W (x , k, t) + {!(x , k),W (x , k, t)} =

Z
�(x , k, k 0)W (x , k 0, t)dk 0 � ⌃(x , k)W (x , k, t)

for modal energy density matrix W in x ⇥ k (Wigner transform of u(x, t)) of !-modes of
�U = ⇢�1 (C : U ⌦ k) k.

Di↵usion regime : `sc << L [Aki, 1969 ; Weaver, 1990 ; Ryzhik et al., 1996]

Modal energy densities decouple and equipartition is verified

@tw(x , |k|, t) = r · D(|k|)rw(x , |k|, t)

the results obtained for flat object with k0a=2 and
k0c=0.6, with all other parameters unchanged. In this
case, one obtains the following diffusion constants:
D|| =37.3 km2/s, D⊥=10.9 km2/s with 7% rms, and
D|| =149.1, D⊥=43.6 km2/s with 3.5% rms. This shows
that the energy will be preferentially transported along
the direction of flattening of the scatterers. Apart from
this difference, the essential features are similar to
Fig. 5.

7. Application to a waveguide

For the moment, we have considered the propagation
of energy in infinite space. This is not very satisfying

since there are major velocity discontinuities inside the
earth that cause the reflection of the seismic energy.
Below we develop a simple model for the propagation in
the lithosphere, as illustrated in Fig. 7. We assume that
the lithosphere is composed of a random heterogeneous
and anisotropic crust overlying a homogeneous mantle.
Such a model has already been shown by Margerin et al.
(1999), Hoshiba et al. (2001), Lacombe et al. (2003) to
successfully predict the coda decay of regional earth-
quakes. We further assume that the free surface is
perpendicular to the symmetry axis of the anisotropic
scatterers as depicted in Fig. 7, i.e. the scatterers are
either stretched perpendicular to the surface or flattened
parallel to the surface. Taking the ẑ axis perpendicular to
the surface, and an arbitrary set (x̂ , ŷ) of orthogonal
vectors parallel to the surface diagonalizes the diffusion
tensor. We call D|| and D⊥ the eigenvalues of the
diffusion tensor parallel and perpendicular to the free
surface, respectively. Our model also includes a step
increase of wavespeed at the Moho. We assume that the
eigenvalues of the transport mean free path tensor are
smaller than the crustal thickness. In this regime, the
diffusion approximation should apply (Margerin et al.,
1998) but must be supplemented with boundary
conditions. They can be obtained by writing down a
detailed balance of energy on an infinitesimal portion of
interface. The presence of statistical anisotropy does not
yield any new difficulties, and we refer the reader to the
literature (Zhu et al., 1991; Margerin et al., 1998) for
further details of this procedure. Writing down an
energy balance at the free surface and at the Moho, one
obtains the following boundary conditions, respectively:

AEðt;RÞ
Az

¼ 0 at z ¼ 0 ð44Þ

Eðt;RÞ þ 2c−10 gD8
AEðt;RÞ

Az
¼ 0; at z ¼ H ð45Þ

where γ is a function of the reflection coefficient at the
Moho at depth H. The zero flux condition at the surface
expresses the total reflection of energy, while the
boundary condition at the Moho describes the partial
trapping of energy in the crust. The factor γ is related to
the usual energy reflection coefficient R at the Moho as
follows (Zhu et al., 1991; Margerin et al., 1998):

g ¼
1þ 3

Z 1

0
RðlÞl2dl

1−2
Z 1

0
RðlÞldl

; ð46Þ

where μ denotes the cosine of the incidence angle. Since
the scattering mean free path in the mantle is assumed to

Fig. 6. Energy density as a function time (in seconds) in a Gaussian
anisomeric random medium with k0a=2.0 and k0c=0.6. The point
source has unit energy. The location of the receivers is indicated next to
each curve. The heavy lines correspond to analytical solutions of the
diffusion equation, while the wiggly lines show the results of the
Monte Carlo simulations. Top: weak scattering regime (rms velocity
fluctuations 3.5%). Bottom: strong scattering regime (rms velocity
fluctuations 7%).
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Mapping from (VP (x), VS (x)) to (�(x , k, k 0),⌃(x , k), D(|k|))
is explicit
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Homogenized models provide upscaled models explaining the impact of small-scale
phenomena at the larger scales.

Some homogenized models are stochastic, some are deterministic (sometimes both are
available in the same regime).

15. L. Margerin. “Attenuation, transport and diffusion of scalar waves in textured random media”. In : Tectonophys. 416.1-4 (2006), p. 229-244. doi :
10.1016/j.tecto.2005.11.011
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